
Voice Solutions 201
Accelerator

July 2025

2

How to use this Accelerator

This accelerator offers a robust starting point for anyone looking to quickly
ramp up to an intermediate (201-level) understanding of the tools,
methodologies, and outcomes involved. You’ll gain practical insights from
proven reference architectures. To help you take the next step, we’ve curated a
selection of additional resources tailored to deepen your expertise.

Showcasing the options you have to build this solution

Giving you a high-level approach to know where to start

Showing you how to approach next steps

3

Overview
What we’ll cover
● Value Proposition

● Building:

○ Process flow

○ High-level architecture

○ Features & limitations

○ Key challenges & pitfalls

○ Solution Deep Dive

Voice Solutions enable users to interact
with LLMs through speech, building
upon the voice interface API capabilities
such as converting text into
natural-sounding speech, transcribing
spoken language into text, and direct
speech-to-speech modality for real-time
spoken language interactions.

Example use cases
- Customer Service Agent
- Multimodal User Interface

Value Proposition

Personalization at Scale

LLM-powered voice solutions
can adapt based on context,
user preferences, tone, and
prior interactions. This enables
emotionally aware,
context-sensitive responses
that improve customer
satisfaction, build brand loyalty,
and offer differentiated service.

5

Operational Efficiency

Voice Solutions can handle
routine inquiries and
high-volume interactions
autonomously, freeing up
human teams to focus on
complex or high-value tasks.
Organizations can optimize
staffing levels while maintaining
or improving service quality.

Seamless Interactions

Voice interfaces reduce the
cognitive and physical effort
required to interact with
systems, increasing
accessibility. Users can speak
instead of typing or navigating
menus—ideal for accessibility,
hands-free environments (e.g.,
driving), and real-time
interaction scenarios.

Value Proposition

Building

Process flow

High Level Architecture - Voice Agents (Chained Approach)

GPT-4o-
transcribe

GPT-4o
(conversation

prompt
w/function
calling, cart

management
prompt)

GPT-4o-
mini-tts

Agent response

Text
representation

Cart

Human Escalation
Management

9

Features and limitations (Chained Approach)

● High control & transparency: All
intermediate outputs are accessible (e.g.,
transcripts), making it easier to debug,
audit, and fine-tune logic.

● Structured interaction support: Works well
with workflows that require function calling,
scripting, or logging.

● Easy to repurpose existing LLM apps:
Especially valuable if you're starting with a
text-based app or API flow.

● Easier to run evals on: Store and
anonymizing transcripts and generating
synthetic data is faster and cheaper.

Good for ✅ Not good for ❌

● Higher latency: Due to the sequential
processing of transcribe → generate →
synthesize.

● Loss of vocal nuance: Emotions, tone, or
hesitations in user speech are flattened
during transcription.

High Level Architecture: Realtime Voice Approach

GPT-4o voice
real-time

v1/realtime

Low-latency
interaction with

streaming audio input
and output

Supports function
calling (similar to Chat

Completions API)

bi-directional
Websocket

11

Features and limitations (Realtime Voice)

● Low-latency, fluid conversations:
Designed for natural turn-taking and
responsive dialogue.

● Multimodal understanding: The model
"hears" tone, inflection, and nuance,
making interactions feel more human.

● No need for transcripts: Reduces
complexity if logs and auditability aren’t
top priorities.

Good for ✅ Not good for ❌

● Less predictable outputs: May be
harder to log, validate, or review
individual stages.

● Fewer guardrails and lower
modularity: It’s more difficult to insert
logic or hand off control between
steps.

● Cost: Realtime API is more expensive.

12

Key Challenges & Pitfalls

● Determining which to go with:

Realtime or chained approach.

● Evaluating performance can be harder

with voice, as automated evals are

harder to implement.

● Maintaining low latency with high

quality. This may have tradeoffs that

need to be managed.

CHALLENGES

● Unclear Goals

○ Ensure that clear evaluations

are established ahead of time.

● Architecture Selection

○ Ensure that requirements are

clearly defined from the onset

to make sure the right method

is chosen.

PITFALLS & MITIGATIONS

Solution Deep Dive

OpenAI API Offerings

Text-to-speech

Transforming written text
into natural-sounding
speech, enabling
applications like
audiobooks, virtual
assistants, and
announcement systems.

Speech-to-text

Converting spoken
language into written text,
facilitating functionalities
such as voice commands,
transcriptions, and
voice-controlled data
entry.

Speech-to-speech

Directly translating
spoken input into
synthesized speech
output, allowing for
real-time language
translation, voice cloning
and customer support
applications.

● GPT-4o-mini-transcribe

● GPT-4o-transcribe

● GPT-4o-mini-tts ● GPT-4o-realtime

● GPT-4o-mini-realtime

https://platform.openai.com/docs/guides/text-to-speech
https://platform.openai.com/docs/guides/speech-to-text
https://platform.openai.com/docs/guides/realtime

Voice Translation of an Audio (chained)

Transcribe
GPT-4o

transcribe

Speech
GPT-4o-mini-

tts
Translate
GPT-4o-mini

Audio in
source

language

Source
language

transcription

Translation to
target language

Voice output
in target
language

● High control over each stage
● Easy to audit and debug transcript
● Higher Latency
● Transcription step means you lose accent, tone

Voice Translation of an Audio (GPT-4o audio)

Translate
GPT-4o-audio

Audio in
source

language

Voice output
in target
language

● Captures inflection and tone by translating raw audio
● More expensive than chained with tts & stt
● If you want to evaluate the transcripts, you need to

transcribe the input language audio to compare with
the output translated transcript

● GPT-4o audio must wait for the full audio input to be
uploaded and processed

Voice Translation of live Audio (with Realtime API)

Translate
GPT-4o
realtime

Audio in
source

language

Voice output
in target
language

● Streaming, lowest latency
○ Still turn-based, model cannot simultaneously

listen and translate
● More expensive than chained with tts & stt or GPT-4o

audio
● More complex architecture, requires websockets or

WebRTC

Evaluating Translations: Standard Evals

Standard Evals like BLEU and ROUGE gauge
quality based on token overlap (not semantic)

● BLEU measures precision of n-grams
● ROUGE measures overlap of n-grams and the

longest common subsequence.
○ An n-gram is simply a grouping of

tokens/words.
● METEOR is a hybrid eval: it still uses n-gram

matching but adds semantic cues like
synonymy and paraphrasing.

● BLEU is better when precision matters,
ROUGE when recall matters and summaries,
METEOR when both matter.

These metrics are deterministic, can be a canary and
are used for academic benchmarks

But these don’t capture semantic similarity, just
syntactical.

Evaluating Translations: Semantic

Semantic evals
● Cosine similarity measures semantic similarity

LLM-as- judge evals
● Prompt GPT-4o-mini with key evals.

Note: our eval platform only handles text, so you need to
compare translations via transcript (not raw audio).

Evaluating audio
● You can pass audio samples to GPT-4o audio and prompt

for tone, inflection, speech rate, etc inflection

Evaluating Translations: Example

Reference: “He is eating.”
Candidate: “He is having dinner.”

Metric Score / Grade Notes

BLEU ~0.41 Penalized for paraphrasing

ROUGE-1/L ~0.67 Partial match

METEOR ~0.65–0.7 Recognizes paraphrase

Cosine ~0.92 Semantically strong

LLM-as-Judge B (4/5
adequacy)

Fluent, semantically sound, slight meaning
shift

Deep dive

21

Voice Chatbot - Chained Architecture

Chained Voice Agent Architecture

● Sequential Audio Processing:
○ Predictable, easy to debug
○ Full transcript access for both user input and model output

● Control & Flexibility:
○ Allows post-processing, safety checks, and application logic
○ Seamlessly converts text-based LLM apps into voice agents

● Model Chain Example:
○ GPT-4o-transcribe (ASR) → GPT-4.1 (LLM) → GPT-4o-mini-tts (TTS)

Detailed Flow
1. User Audio Input

○ Captured via application front-end
○ Passed to the STT module for transcription.

2. Speech-to-Text Model (ASR)
○ Converts incoming audio into text using ASR (e.g., GPT-4o-transcribe).
○ Ensures text representation for downstream processing.

3. Text-Based Model (LLM Agent)
○ Receives transcribed text and processes it using an LLM (e.g., GPT-4.1).
○ Tool Use:

■ Supports agentic actions:
■ Function Calls: Integrates external APIs or logic.
■ Search: Retrieves real-time or database information.
■ Handoff: Passes control to human or alternate agent.

○ Produces a contextual, intelligent response in text form.

4. Text-to-Speech Model (TTS)
○ Synthesizes the agent’s text response into natural-sounding audio (e.g., GPT-4o-mini-tts).
○ Enables conversational, voice-based user experience.

5. Agent Audio Output
○ Audio response delivered back to the user via the application.

Deep dive

24

Realtime Speech-to-Speech

Realtime

Direct Audio-to-Audio Pipeline:
● User audio is streamed directly into a multimodal agent (no

intermediate transcript).
● The S2S agent model processes, interprets, and generates

speech output in real time.

Multimodal Model Capabilities:
● Ingests and reasons over both audio and text features

natively.
● Captures prosody, inflection, and speaker intent directly

from speech input.
● Filters noise, handles interruptions, and maintains

conversational context natively.

Tool Call Integration:
● Supports live function execution, retrieval, and handoff

scenarios—all triggered within a single audio session.

Service Mechanics - The Basics

● Stateful API - clients connect to wss://api.openai.com/v1/realtime via websockets and push/receive JSON
formatted messages throughout the duration of a session

● Session - A single conversation between a client and the server

● Triggering Server Responses: Two modes:
○ server_detection the server will run voice activity detection (VAD) over the incoming audio and respond

after the end of speech
○ client_decision the client sends an explicit message that it would like a response from the server. This

mode may be appropriate for a push-to-talk interface or if the client is running its own VAD.

● Interruptions - model can be interrupted, halting model inference but retaining the truncated response in the
conversation history.

● Tool calls - the client can expose tools to the server in a set_inference_config message and the server will
respond with tool call messages, if appropriate

● Messages - The API communicates using event based messages over the websocket connection.

https://api.openai.com/v1/realtime

Messages

The realtime API takes advantage of bi-directional event based communication over the websocket to
accept and produce messages asynchronously as the session progresses.

A typical flow may look like this:

< start_session <

Client OpenAI
v1/realtime

> set_inference_config >

> client_interrupted >

< add_content (streaming content) <

< turn_finished <

< model_lisenting <

28

Text-based agents:
Delegation / Handoff

29

Speech-to-speech agents:
Delegation through tools

Design for Low Latency Across the Stack Focus the Agent’s Task Scope Adapt the Voice to the User and Context

Voice experiences demand responsiveness —
users expect interactions to feel real-time. Use
low-latency transport protocols like WebRTC for
client-facing agents and WebSocket for
server-based integrations. Prioritize geographic
routing, caching, and optimal model selection to
minimize processing delays, and continuously
monitor roundtrip latency during live sessions.

Voice agents perform best when they are
purpose-built for narrow tasks. Avoid overloading
them with too many tools or intents. Instead, define
a tight goal, provide fallback mechanisms (e.g.,
escalation to a human), and embed critical
information directly in the system prompt to
optimize on tool calls. This enables smoother, more
reliable voice flows.

The tone, verbosity, and pacing of voice responses
should shift depending on task type and audience.
A tutoring session may benefit from slower,
supportive language, while a voicebot handling
appointment bookings should be concise and
direct. Use meta-prompting to encode stylistic
variation, and consider real-time voice modulation
to tailor pacing per session.

Align Voice Architecture w/ Latency Needs Robust Evaluation and Feedback Loop

Pick your stack based on how quickly the user
must hear a response: choose the Real-Time Voice
pipeline for sub-second, conversational
turn-taking, and switch to a chained workflow for
longer, prescriptive tasks where modest latency
trades off for flexibility and lower cost.

Instrument the full pipeline — from audio input to
speech synthesis — to trace performance issues
and optimize continuously. Use eval frameworks to
track metrics like turn latency, interruption
handling, hallucination rates, and user satisfaction
(e.g., NPS). Build feedback loops with real usage
data and test iteratively in staging before scaling
up.

Best Practices

30

Key Takeaways

● Solution Overview: Voice Solutions enable users to interact with LLMs through speech

● Use case:
○ Voice based sales and service solutions
○ Voice assistants for user support
○ Audio narration such as news, podcasts, and audio books
○ Audio transcription such as meetings and customer interactions
○ Tutoring for language and other skills

Resources
API Documentation
• Realtime API
• Best Practices
• Voice Translation Cookbook
• One way Translation With Realtime
• Realtime Agents Walkthrough (github)
• Text to Speech TTS-1 model
• Speech to text Whisper Model

• Agents SDK voice agents quickstart
• https://github.com/openai/openai-realtime-agents
• https://github.com/openai/openai-realtime-solar-system
• https://www.openai.fm/

https://api.openai.com/v1/realtime
https://platform.openai.com/docs/guides/production-best-practices
https://cookbook.openai.com/examples/voice_solutions/voice_translation_into_different_languages_using_gpt-4o
https://cookbook.openai.com/examples/voice_solutions/one_way_translation_using_realtime_api
https://github.com/openai/openai-realtime-agents
https://platform.openai.com/docs/guides/text-to-speech/overview
https://platform.openai.com/docs/guides/speech-to-text
https://openai.github.io/openai-agents-python/voice/quickstart/
https://github.com/openai/openai-realtime-agents
https://github.com/openai/openai-realtime-solar-system
https://www.openai.fm/

