
Building Coding Agents
Accelerator

July 2025

2

How to use this Accelerator

This accelerator offers a robust starting point for anyone looking to quickly ramp up
to an intermediate understanding of the tools, methodologies, and outcomes
involved in building coding agents.

You’ll gain practical insights from proven reference architectures. To help you take
the next step, we’ve curated a selection of additional resources tailored to deepen
your expertise.

Showcasing the options you have to build this solution

Giving you a high-level approach to know where to start

Showing you how to approach next steps

3

Overview
What we’ll cover
● Value Proposition

● Building:

○ Process flow

○ High-level architecture

○ Production examples

○ Features & limitations

○ Key challenges & pitfalls

○ Solution deep dive

● Takeaways

A coding agent is an AI-powered
software tool designed to autonomously
assist with various aspects of software
development. Coding agents can
understand natural language
instructions, generate code, debug,
test, and even modify existing
codebases with minimal human
intervention.

Example use cases
- Coding Assistant
- Automated SWE

Value Proposition

Increased Productivity

Accelerate development by
generating boilerplate code,
suggesting completions, and
refactoring existing logic with
simple natural language
commands. Developers spend
less time on repetitive syntax
and more on design, logic,
and problem-solving.

5

Automated Tasks

Agents can handle routine but
time-consuming tasks like
generating documentation,
writing unit tests, and setting
up project scaffolding. This
automation not only saves
time but ensures these critical
steps are no longer skipped
due to human oversight.

Decreased Bugs

By enforcing consistent
coding styles and integrating
automated test generation,
coding agents reduce
common errors and
regressions. Their ability to
validate logic against known
patterns improves early bug
detection and overall code
quality.

Value Proposition

Building

High Level Architecture

7

Execution Sandbox

Source Control

Linting & Static
Analysis

Tools

UI & Governance Layer
Slack/IDE, Audit Logging, HITL

Primitives

Code Indexing &
Retrieval Diff Application Code

Checkpointing

● Automated Tests: Reasoning models are
particularly good at writing tests
automatically.

● Code Consistency: Agents can apply the
same standards across code bases.

● Documentation: Agents excel at doing
repetitive, rote tasks, such as
documentation.

8

Features and limitations

Good for ✅ Not good for ❌

● Vibe Coding:
○ While the agents can be great for

writing code for well defined
problems, humans still need to
double check work.

● Large Scale Decisions:
○ Expert architects should still be

making high level choices on the
direction of the product.

9

Key challenges and pitfalls

● Selecting proper RAG techniques can

be make or break for output quality.

● Ensuring agents are generating

up-to-date code methods as

documentation changes.

CHALLENGES

● Over Reliance on LLM Intelligence

○ Ensure that proper RAG is used

to feed in necessary context for

the agent to succeed, and use

fine tuning for specific types of

code.

● Too Much Complexity

○ Keep the scope of agent tasks

smaller to play to its strengths.

PITFALLS & MITIGATIONS

Solution Deep Dive

11

How the SDLC is changing

Plan Design Implement Test Deploy Maintain

Bug Fixes

Enhancements

SDLC has been evolving steadily with the advent of SaaS and Cloud. Some trends:
● Shift towards more integrated roles and streamlined processes.
● Pure QA roles disappearing as engineering teams become “full-stack” (implementation, testing, deployment).
● Increasing collaboration between product, design, and engineering using tools like Figma and Jira.

AI is accelerating this trend
● LLMs are augmenting and/or automating various SDLC stages.
● Software development becoming democratized; fewer specialized skills needed to build & maintain systems

12

How the SDLC is changing

AI is condensing the SDLC in many ways. Some examples:

● Software Design and Requirements: LLMs can assist in translating natural language requirements into
technical specifications. This capability can be employed to synthesize customer feedback at scale and
iterate rapidly on designs.

● Automated Testing and Quality Assurance: The days of dedicated QA testing teams are over, and LLMs
are further automating testing by generating test cases, and suggesting fixes. This automation enhances
software quality and reduces the need for manual testing.

● Continuous Integration and Deployment: By integrating LLMs into CI/CD pipelines, organizations can
automate code reviews, generate deployment scripts, scan for vulnerabilities and ensure consistency across
releases. This streamlining supports faster delivery cycles and more reliable software releases.

● Maintenance and Documentation: Documentation often lags behind code changes, but LLMs are helping
keep documentation current by generating summaries and explanations that adapt as the codebase evolves.
They can also assist in understanding legacy systems, simplifying maintenance tasks.

13

Automation vs Augmentation

Spectrum of human involvement Low automation High automation

● Low automation systems are usually triggered explicitly by a user and require frequent human feedback
○ Great for accelerating ICs performing differentiated or mission-critical work

■ Well suited for tasks like rapid prototyping, infrastructure management
○ For example: Cursor

● High automation systems usually trigger based on a signal or automation and require less human feedback
○ Scales well but may miss unique problems

■ Well suited for tasks like unit test coverage, UI testing, migrations
○ For example: Factory, Cognition

● Key factors in the tradeoff:
○ Quality → More human checks lead to better, aligned outcomes; with fewer checks errors may go

undetected.
○ Cost and ROI → End-to-end automations can be expensive to setup but can drive efficiency when they

work at scale. More human work is slower but you usually get started right away, and it helps employees
focus on differentiated tasks by removing drudgery. Moreover, there are critical tasks that cannot be
performed without strategic thinking and creativity!

14

Current State of Coding with AI

Autonomous SWE: Cognition, Factory, AI SWE
● Agentic e2e

AI-native IDEs: Cursor, Windsurf,
● Standalone env
● ideal for devs seeking a fully integrated experience.

Assistants and extensions: ChatGPT (work with VS Code on macOS), Github Copilot
● Improve familiar workflows without a steep learning curve.

No-code, 0 → 1 Apps / Prototyping: Lovable, Bolt, Replit, v0 by Vercel
● simplify dev w/ minimal coding
● value: rapid prototyping and non-technical users building functional apps fast.

Custom/in-house implementation →
https://medium.com/airbnb-engineering/accelerating-large-scale-test-migration-with-llms-9565c208
023b

https://medium.com/airbnb-engineering/accelerating-large-scale-test-migration-with-llms-9565c208023b
https://medium.com/airbnb-engineering/accelerating-large-scale-test-migration-with-llms-9565c208023b

15

Task Examples
Automated Test Coverage
Legacy code with minimal coverage that needs
systematically generated tests before a major refactor.
Example Implementation:

● RAG integration: Retrieves relevant code sections
and documentation for each module.

● Small Model for Drafts: GPT-4o-mini quickly
generates skeleton test cases.

● Larger Model Review: An o1 model verifies
correctness and expands tests for complex edge
cases.

● Value: Ensures consistent QA standards across
thousands of files with minimal developer
overhead.

Multiple Service Version Upgrades
Numerous microservices running outdated dependencies
that all require a coordinated upgrade.
Example Implementation:

● Dependency Discovery: Scans internal repos,
identifies outdated libraries, and plans necessary
changes.

● Automated Refactoring: GPT-4o bulk-updates
import statements, function signatures, configs.

● Verification & Testing: Invokes a test runner or
staging environment to confirm successful
upgrades.

● Value: Enforces consistent, large-scale version
updates while adhering to on-prem constraints and
security policies.

Security & Code Policy Enforcement
Internal code must comply with strict security guidelines,
requiring automated scanning and fixes.
Example Implementation:

● Custom Linter Tool: Integrates with a specialized
compliance or SAST engine for scanning.

● Context-Aware Refactoring: A smaller model
fixes routine issues; escalates to an o1 model for
major rewrites.

● Verification & Testing: Invokes a test runner or
staging environment to confirm successful
upgrades.

● Value: Enforces consistent, large-scale version
updates while adhering to on-prem constraints and
security policies.

Tech Debt Cleanup DevOps Pipeline Automation Automated Architecture Reviews
Multiple repositories have duplicated patterns, inconsistent
styles, and require systematic cleanup.
Example Implementation:

● Knowledge Retrieval: Indexes all repos, surfaces
repeated utility functions and style deviations.

● Automated Consolidation: GPT-4o merges
duplicates, standardizes references, ensures builds
remain intact.

● Review and Approvals: o1 double-checks logic
integrity for widespread refactoring changes.

● Value: Reduces tech debt while maintaining
internal style guidelines and validating large-scale
code refactors.

Complex build-and-deploy workflows that need to be fully
orchestrated from code commit to production.
Example Implementation:

● Orchestration Layer: Listens for repo changes,
triggers Docker-based builds and tests.

● Multi-Model Intelligence: On failure, collects logs,
uses o1 for root-cause analysis, and proposes a fix
or rerun.

● Value: Minimizes manual intervention, centralizes
logs and build artifacts for compliance, and
ensures traceability in large DevOps pipelines.

Internal standards require regular architecture checks and
up-to-date documentation across teams.
Example Implementation:

● Context Retrieval: Pulls architecture guidelines
and existing system diagrams.

● Analysis & Suggestion: Flags code violations,
proposes compliant refactoring, updates design
docs.

● Documentation Generator: GPT-4o refreshes
READMEs or architecture diagrams in one pass.

● Value: Maintains consistent architecture and
accurate documentation with minimal manual
overhead, providing alignment with internal
frameworks.

16

Automated Test Coverage

1. Trigger: Identify codebase area with low test coverage
2. Retrieval: Retrieve code paths that need to be tested along with any existing tests against these codepaths
3. Spec: Develop a plan to add tests
4. HITL Review Spec: Human to review test plan
5. Propost: Create test plan based on final spec plan and create pull request
6. HITL Review Proposed Changes: Human reviews the automated tests created, matches intent with implementation and merges

GenAI models
automatically generate
test cases from code
and requirements,
achieving broad test
coverage.

Identifies edge cases
and enhances
engineer efficiency.

Generates synthetic
workloads for
realistic load testing.

Evaluates scalability
and facilitates more
extensive testing
with ease.

Automatically
classifies and
prioritizes issues,
providing fix
suggestions.

Accelerates
debugging by
leveraging past
solutions.

Incorporates agents
into PR reviews to
improve code
quality.

Analyzes commit
diffs and interacts
with GPT to reduce
developer burden.

Automated Test
Case Generation

AIDriven Load
Testing

Automated Bug
Triaging and Fix

Suggestions

Leveraging
Agents in PR

Review

Enhancing Software Testing with GenAI

What It Solves

● Excels at automating code reviews for large-scale
repositories.

● Higher accuracy in debugging and refactoring
compared to GPT-4o.

● Latency is offset by high reasoning capabilities.

Reviewing, Debugging, and
Improving Code

19

● Speculative Decoding/Predictive Outputs (latency
optimization)

● Reasoning for Planning
● Context management → summarize every N turns
● Diff formats → don’t use line numbers, share format

example
● Prompting best-practices

Platform Best Practices

Coding with o-series

OpenAI o1 simplifies app creation
and editing with clear prompts.
Build a React app like an
interviewer feedback form, or
enhance existing code. Pairing o1
with GPT-4o yields better
outcomes.

➔ Create new apps: Provide clear prompts to
generate a React app.

➔ Edit existing code: Ask o1 to review, update,
and optimize.

➔ Combine with 4o: Leverage both models for
better results.

Key Steps:
.

.

.

INDUSTRY: Software Engineering

Full Stack Apps

Prior models handled granular programming tasks
but struggled with high-level instructions. O series
models can take a simple spec or script and
generate a complete full-stack application,
including all necessary files and dependencies.

1. Comprehensive Development: Transforms high-level
specs into full applications.

2. Automation: Reduces manual task breakdown for
developers.

3. End-to-End Execution: Generates all required files for
a functional build.

Key Benefits:

INDUSTRY: Software Engineering

Code Reviews

Most LLMs struggle with code optimization and
debugging, often missing subtle issues. O series
modelsʼ advanced reasoning enables deeper code
understanding, helping to isolate and fix tricky
bugs with clear, verifiable solutions.

1. Higher Accuracy: Identifies and resolves complex bugs
effectively.

2. Improved Performance: Suggests optimizations
beyond obvious approaches.

3. Clear Explanations: Provides well-structured
responses for easy verification.

Key Benefits:

INDUSTRY: Software Engineering

Algorithms

Models without reasoning struggle with complex
algorithm design, requiring detailed prompts and
error correction to generate reliable code. O series
modelsʼ built-in reasoning and deep world
knowledge enable them to produce correct code
with minimal prompting.

1. Improved Accuracy: Generates correct code with less
guidance.

2. Reduced Overhead: Minimizes the need for extensive
scaffolding.

3. Enhanced Reasoning: Handles complex algorithmic
challenges more effectively.

Key Benefits:

24

Best Practices

Modular, Orchestrated Architecture

Separate your system into distinct
components: orchestration (the “brain”),
knowledge retrieval, models, tool-calling,
and an API/interaction layer. Keep them
loosely coupled so you can swap models
or tools independently. Optimally handle
security concerns (sandbox code
execution, restricted file access).

Intentional Model Selection

For quick completions and straightforward
refactoring, opt for smaller/faster models
(e.g. GPT-4.1-mini). Escalate to larger
reasoning models (o-series) for intricate
debugging or complex tasks. Consider a
multi-model setup or
“plan-and-implement” workflow (use more
powerful models to outline and a faster
model to implement).

Retrieval and Context Management

Use a retrieval-augmented generation
(RAG) approach to feed relevant
codebase snippets, docs, or usage
examples into the model. Avoid
overwhelming the model with too much
context—be selective. Use smaller
models like GPT-4.1-mini to summarize
and distill large context sources to keep
prompts within token limits.

Latency Optimization

Cache embeddings, search results, and
test outputs so repeated operations are
faster. Run processes in parallel where
possible and stream outputs to improve
perceived responsiveness. Use Predicted
Outputs when regenerating code or text
files with minor changes, significantly
reducing response latency for frequent
tasks. Set latency budgets per request
type (e.g., <100ms for inline completions).

Security & Compliance

Sandbox all AI-driven code execution and
apply strict resource permissions (e.g.,
read-only on sensitive repos). Ensure
compliance with internal governance: log
all AI actions (edits, commits, build
triggers) for audit trails. Control data flow:
keep code and developer data within
secure boundaries. For instance,
containerize the system so that LLM calls
do not expose proprietary code to
external services unless explicitly allowed.

Write Clear, Structured Prompts

Provide concise, well-formatted
instructions and explicitly request the
output format (e.g. “Give me only the final
code snippet”). Avoid over-including
examples or “chain-of-thought” in the
prompt—o-series models do their own
internal reasoning. Prompt the model to
verify or critique its solution and to follow
style/format guidelines precisely.

Success & Takeaways

Success metrics
Process Step Solution Evaluation Metric

Documentation Writing Accuracy Is the documentation correct and
complete

Accuracy of documentation

Time Savings Time savings on documentation Estimated hours of time savings on
documentation by a human on a similar task.

PRs Code Accuracy How often would this code pass PR
review and make it into product

% accepted PRs

Bugs Is the solution able to identify and fix
bugs

of bugs caught/fixed
% of accepted PRs later found to have bugs

Time Savings Time savings on writing code Estimated hours of time savings on
documentation by a human on a similar task.

Key Takeaways

● LLMs Streamline the Entire SDLC: AI accelerates the full software lifecycle—from translating
requirements to generating tests and updating docs. Tools like GPT-4o and RAG automate refactoring
and keep knowledge current.

● Architecture and Deployment Must Be Modular, Secure, and Performant: Separate system layers
(orchestration, retrieval, models) ensure flexibility. Sandbox execution and containerization enforce
security, while caching and streaming reduce latency.

● Prompt Engineering and Model Selection Drive Outcomes: Clear prompts and smart model
selection are key. Use fast models (e.g., GPT-4o-mini) for simple tasks and larger ones (o-series) for
deep reasoning. Multi-model workflows optimize results.

● Scalable DevOps and Maintenance with AI Agents: LLMs automate DevOps—from builds to
upgrades—by orchestrating tasks, fixing dependencies, and cleaning up tech debt. This standardizes
code and reduces manual work at scale.

